Insert Clause 168 to Clause 169 in numeric order (see later in this amendment for addition of corresponding annexes):

Editor's Note (to be removed prior to Working Group ballot):

Clause 168 is imported from Clause 147 and modified to remove the point-to-point PHYs, along with opening up the mixing segment and MDI portions. This is detailed in https://www.ieee802.org/3/da/public/111820/zimmerman 3da 01a 111820.pdf as well as the minutes of the November 18, 2020 meeting.

If the task force chooses not to make a new phy type this clause may be deleted.

Commenters are encouraged to review this text considering the following items (in addition to editor's notes sprinkled throughout):

- 1. If you envision an 802.3da PHY as a minor modification of the clause 147 10BASE-T1S PHY, what aspects of the clause 147 specification need to be modified. Please propose specific text.
- 2. If you envision significant modifications, please consider which sections to remove and replace, or whether it is better to write a completely new clause knowing this early will help. For example, inclusion of FEC might be removal and replacement of substantial portions of 168.3, but not 168.4 or 168.5.
- 3. If you envision the 802.3da PHY to be identical in specification to clause 147 10BASE-T1S, with the only changes being the mixing segment and perhaps MDI loading, please consider how to modify clause 147 from IEEE Std 802.3cg-2019.

There are a few major items needing work in this clause at a minimum:

- 1. Definition of the Mixing Segment (168.7)
- 2. Definition of the MDI (168.8)
- 3. Any PHY specification enhancements necessary to achieve the objectives (right now it is identical to clause 147 specs from a performance standpoint)

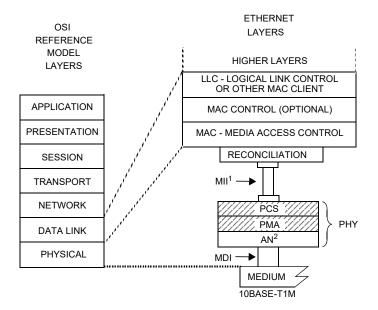
168. Physical Coding Sublayer (PCS), Physical Medium Attachment (PMA) sublayer and baseband medium, type 10BASE-T1M

Editor's Note (to be removed prior to Working Group ballot):

The use of the acronym PHY is aligned with the expected resolution of comments in the IEEE Std 802.3 revision; Alignment should be checked prior to 802.3da entering WG ballot.

This clause defines the type 10BASE-T1M Physical Coding Sublayer (PCS) and type 10BASE-T1M Physical Medium Attachment (PMA) sublayer. Together, the PCS and PMA sublayers comprise a 10BASE-T1M Physical Layer device (PHY). Functional and electrical specifications for the type 10BASE-T1M PCS, PMA, and MDI are provided in this clause.

The 10BASE-T1M PHY is specified to be capable of operating at 10 Mb/s using a single balanced pair of conductors as a shared medium. The 10BASE-T1M PHY operates in a half-duplex shared-medium mode capable of operating with multiple stations connected to a mixing segment, defined in 168.7. The medium supporting the operation of the 10BASE-T1M PHY is defined in terms of performance requirements between the attachment points (Medium Dependent Interface (MDI)), allowing implementers to specify their own media to operate the 10BASE-T1M PHY as long as the normative requirements included in this clause are met.


The 10BASE-T1M PHY is interoperable with the Clause 147 10BASE-T1S PHY when the 10BASE-T1S PHY is in multidrop mode and the mixing segment is compliant with 147.8.

10BASE-T1M PHYs optionally support PHY Level Collision Avoidance (PLCA), described in Clause 148.

10BASE-T1M follows an integrated PCS and PMA architecture and therefore does not support an AUI (see Figure 1–1).

168.1 Relationship of 10BASE-T1M to other standards

The relationship between the 10BASE-T1M PHY, the ISO Open Systems Interconnection (OSI) Reference Model, and the IEEE 802.3 Ethernet model are shown in Figure 168–1. The PHY sublayers (shown shaded) in Figure 168–1 connect one Clause 4 Media Access Control (MAC) layer to the medium. Auto-Negotiation, as defined in Clause 98, is not available for the 10BASE-T1M PHY. A Management Entity is required using MDIO or equivalent functionality. Optional MDIO is defined in Clause 45.

MDI = MEDIUM DEPENDENT INTERFACE
MII = MEDIA INDEPENDENT INTERFACE

NOTE 1—MII is optional NOTE 2—Auto-Negotiation is optional

PCS = PHYSICAL CODING SUBLAYER
PMA = PHYSICAL MEDIUM ATTACHMENT
PHY = PHYSICAL LAYER DEVICE

AN = AUTO-NEGOTIATION

Figure 168–1—Relationship of 10BASE-T1M PHY to the ISO/IEC OSI reference model and the IEEE 802.3 Ethernet model

168.1.1 Conventions in this clause

The body of this clause contains state diagrams including definitions of variables, constants, and functions. Should there be a discrepancy between a state diagram and descriptive text, the state diagram prevails.

168.1.1.1 State diagram notation

The conventions of 21.5 are adopted with the extension that some states in the state diagrams use an IF-THEN-ELSE-END construct to condition which actions are taken within the state. If the logical expression associated with the IF evaluates TRUE, then all the actions listed between THEN and ELSE will be executed. In the case where ELSE is omitted, the actions listed between THEN and END will be executed. If the logical expression associated with the IF evaluates FALSE, then the actions listed between ELSE and END will be executed. After executing the actions listed between THEN and ELSE, between THEN and END or between ELSE and END, the actions following the END, if any, will be executed.

168.1.1.2 State diagram timer specifications

All timers operate in the manner described in 40.4.5.2.

168.1.1.3 Service specifications

The method and notation used in the service specification follows the conventions of 1.2.2.

168.2 Service primitives and interfaces

The 10BASE-T1M PHY uses the service primitives and interfaces in 40.2, with exception of the following clarifications and differences noted in this subclause. Figure 168–2 shows the relationship of the service primitives and interfaces used by the 10BASE-T1M PHY.

Figure 168-2—10BASE-T1M PHY interfaces

The 10BASE-T1M PHY uses the Media Independent Interface (MII) as specified in Clause 22.

As shown in Figure 168–2, 10BASE-T1M uses the following service primitives to exchange symbol vectors, status indications, and control signals across the PMA service interface:

PMA UNITDATA.indication (rx sym)

52 53 54

ZZIId i ebitary 2023	
PMA_UNITDATA.request (tx_sym)	1
PMA_CARRIER.indication (pma_crs)	2
PMA LINK.indication (link status)	3
PMA LINK.request (link control)	4 5
PCS_STATUS.indication (pcs_status)	6
168.2.1 PMA_UNITDATA.indication	7 8
TOOLETT MA_ONT DATA MINIOUCON	9
This primitive defines the transfer of one $5B$ symbol in the form of the rx_sym parameter from the PMA to the PCS.	10 11
168.2.1.1 Semantics of the primitive	12 13
PMA UNITDATA.indication (rx sym)	14 15
	16
During reception, the PMA_UNITDATA.indication conveys to the PCS, via the parameter rx_sym, the value of the 5B symbol detected on the MDI during each cycle of the recovered clock.	17 18
168.2.1.2 When generated	19 20
The PMA generates PMA_UNITDATA.indication (rx_sym) messages synchronously for every 5B symbol received at the MDI. The nominal rate of the PMA_UNITDATA.indication primitive is 2.5 MHz, as governed by the recovered clock.	21 22 23 24
168.2.1.3 Effect of receipt	25 26
The effect of receipt of this primitive is unspecified.	27 28
168.2.2 PMA_UNITDATA.request	29 30
This primitive defines the transfer of one symbol in the form of the tx_sym parameter from the PCS to the PMA.	31 32 33
The symbol is obtained in the PCS Transmit function using the encoding rules defined in 168.3.2 to represent 4B/5B encoded MII data or special out of band signaling.	34 35 36
168.2.2.1 Semantics of the primitive	37 38
PMA_UNITDATA.request (tx_sym)	39 40
During transmission, the PMA_UNITDATA.request conveys the value of the symbol to be sent over the MDI, via the parameter tx_sym.	41 42 43
The tx_sym parameter is one of the allowed 5B codes specified in Table 168–1.	44 45
168.2.2.2 When generated	46 47
The PCS generates PMA_UNITDATA.request (tx_sym) synchronously with every symb_timer expiration. The symb_timer is defined in 168.3.2.6.	48 49 50 51

168.2.2.3 Effect of receipt

Upon receipt of this primitive the PMA transmits on the MDI the signals corresponding to the indicated 5B symbol after processing it with DME following the rules in 168.4.

168.2.3 Mapping of PMA_CARRIER.indication

Reports whether a signal compatible with DME encoding rules specified in 168.4.2 is detected on the medium.

168.2.3.1 Function

Maps the primitive PMA_CARRIER.indication to the MII CRS signal.

168.2.3.2 Semantic of the service primitive

PMA_CARRIER.indication (pma_crs)

The pma_crs parameter can take one of two values: CARRIER_ON or CARRIER_OFF.

The pma_crs parameter is set to CARRIER_ON if a signal compatible with DME encoding rules specified in 168.4.2 is present on the medium. Otherwise, the pma_crs parameter is set to CARRIER_OFF.

168.2.3.3 When generated

The PMA_CARRIER.indication primitive is generated continuously by the PMA sublayer.

168.3 Physical Coding Sublayer (PCS) functions

The Physical Coding Sublayer (PCS) consists of PCS Reset, PCS Transmit, and PCS Receive functions as shown in Figure 168–3. The PCS Reset function is explained in 168.3.1, the PCS Transmit function is explained in 168.3.2, the PCS Receive function is explained in 168.3.3, and the PCS Loopback function is explained in 168.3.4.

168.3.1 PCS Reset function

PCS Reset initializes all PCS functions. The PCS Reset function shall be executed whenever any of the following conditions occur:

- a) Power on causes power on = TRUE (see 36.2.5.1.3) while pcs reset = FALSE.
- b) The receipt of a request for reset from the management entity (bit 3.2291.15 defined in 45.2.3.68c.1 **(TBD)**), independently from the current state of pcs_reset.

All state diagrams take the open-ended pcs_reset branch upon execution of PCS Reset. PCS Reset shall keep pcs_reset = TRUE until the complete execution of the PCS Reset function, after which it is set to pcs_reset = FALSE. The reference diagrams do not explicitly show the PCS Reset function.

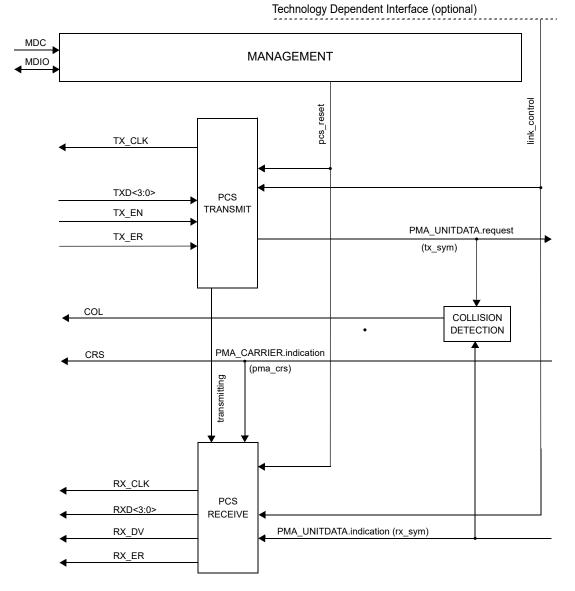


Figure 168-3—PCS reference diagram

168.3.2 PCS Transmit

168.3.2.1 PCS Transmit overview

The PCS Transmit function shall conform to the PCS Transmit state diagram in Figure 168–4 and Figure 168–5, and the associated state variables, functions, timers, and messages.

At each symbol period, PCS Transmit generates a symbol tx_sym conveyed to the PMA through the PMA_UNITDATA.request service primitive, where tx_sym is a 5B symbol. The PMA encodes tx_sym, LSB first, into a DME stream over the wire pair BI DA as specified in Table 168–2.

Upon assertion of TX_EN, the PCS Transmit function passes two SYNC symbols to the PMA, followed by two SSD symbols that replace the first 16 bits of the packet preamble. Following the second SSD, TXD<3:0> is encoded into 5B symbols using the encoding rules specified in Table 168–1, until TX_EN is deasserted.

Following the deassertion of TX_EN, the PCS Transmit generates a special code ESD. When there is no transmit error, ESD is followed by ESDOK. When there is a transmit error, ESD is followed by ESDERR. When a jabber condition is detected, ESD is followed by ESDJAB.

The 10BASE-T1M PHY has one special 5B symbol 'I' (see Table 168–1) which represents SILENCE. SILENCE represents an indication for the PMA to change the output according to 168.4.2.

168.3.2.2 Variables

err

This variable is set in the PCS Transmit state, as described in Figure 168–4 and Figure 168–5.

This variable is used to detect and latch a TX_ER = TRUE condition during data transmission; if such error is detected, an ESDERR symbol is sent at the end of transmission.

Values: TRUE or FALSE

link control

This variable is generated by the Auto-Negotiation function. When Auto-Negotiation is not present or Auto-Negotiation is disabled, link_control has a default value of ENABLE and may be provided by implementation-dependent functionality. When set to DISABLE, all PCS functions are switched off and no data can be sent or received.

Values: ENABLE or DISABLE

pcs reset

The pcs reset parameter set by the PCS Reset function.

Values: TRUE or FALSE

TX EN

The TX EN signal of the MII as specified in 22.2.2.3.

When set to FALSE transmission is disabled. When set to TRUE transmission is enabled.

Values: TRUE or FALSE

TX ER

The TX_ER signal of the MII as specified in 22.2.2.5. When set to FALSE it indicates a non-errored transmission. When set to TRUE it indicates an errored transmission.

Values: TRUE or FALSE

TXD

The TXD signal of the MII as specified in 22.2.2.4. This signal represents a 4B data nibble to be transmitted.

tx_cmd	
	Encoding present on TXD<3:0>, TX_ER, and TX_EN as defined in Table 22–1. Values:
	BEACON: PLCA BEACON indication encoding present on TXD<3:0>, TX_ER, and TX EN.
	COMMIT: PLCA COMMIT indication encoding present on TXD<3:0>, TX_ER, and TX_EN.
	SILENCE: TXD<3:0> does not encode any of the above requests, or TX_ER = FALSE, or TX_EN = TRUE.
tx_sym	
	5B symbol to be conveyed to the PMA Transmit function by the means of the PMA_UNITDATA.request primitive specified in 168.2.2.
transmitting	
S	This variable is set in the PCS Transmit state, as described in Figure 168–4. When this variable is set to TRUE, it indicates a transmission is ongoing. Values: TRUE or FALSE
168.3.2.3 Const	ants
100.0.2.0 00.100	
SYNC / COMM	
	5B symbol defined as 'J' in 4B/5B encoding.
SSD	
	5B symbol defined as 'H' in 4B/5B encoding.
ESD	
	5B symbol defined as 'T' in 4B/5B encoding.
ESDERR	
	5B symbol defined as 'K' in 4B/5B encoding.
ESDOK / ESDI	BRS
	5B symbol defined as 'R' in 4B/5B encoding.
SILENCE	
	5B symbol defined as 'I' in 4B/5B encoding.
ESDJAB	
	5B symbol defined as 'S' in 4B/5B encoding.

168.3.2.4 Functions

ENCODE

This function takes a 4 bit input parameter $Sc_n < 3:0 >$ and returns a 5B symbol according to the following procedure:

- 1. Convert $Sc_n < 3:0 > into Sd_n < 3:0 > as specified in 168.3.2.8.$
- 2. Convert $Sd_n\!\!<\!\!3:0\!\!>\!(4B\mbox{ symbol})$ into the corresponding 5B symbol defined in Table 168–1.

Table 168-1-4B/5B Encoding

Name	4B	5B	Special function
0	0000	11110	_
1	0001	01001	
2	0010	10100	_
3	0011	10101	_
4	0100	01010	_
5	0101	01011	_
6	0110	01110	_
7	0111	01111	_
8	1000	10010	_
9	1001	10011	_
A	1010	10110	_
В	1011	10111	_
С	1100	11010	_
D	1101	11011	_
Е	1110	11100	_
F	1111	11101	_
I	N/A	11111	SILENCE
J	N/A	11000	SYNC / COMMIT
K	N/A	10001	ESDERR
Т	N/A	01101	ESD
R	N/A	00111	ESDOK / ESDBRS
Н	N/A	00100	SSD
N	N/A	01000	BEACON
S	N/A	11001	ESDJAB

ILLL 1 002.308 10 W	b/s Single Fair Multidrop Segments Enhancement rask Force 22nd February 2025
TXCMD_ENC	In the PCS transmit process, this function takes as its arguments the values of tx_cmd and hb_cmd variables and returns a 5B symbol based on the following mapping:
	'N' when the tx_cmd variable is set to BEACON, 'J' when the tx_cmd variable is set to COMMIT, 'I' otherwise.
168.3.2.5 Abbre	viations
STD	Alias for symb_timer_done.
168.3.2.6 Timers	3
symb_timer	A continuous free-running timer. PMA_UNITDATA.request messages are issued by the PCS concurrently with symb_timer_done (see 168.2.2). TX_CLK (see 22.2.2.1) shall be generated from symb_timer with the rising edge of TX_CLK generated synchronously with symb_timer_done. Continuous timer: The condition symb_timer_done becomes true upon timer expiration. Restart time: Immediately after expiration. Duration: $400 \text{ ns} \pm 100 \text{ ppm}$ (see 22.2.2.1)
unjab_timer	Optionally times the minimum duration the PHY suppresses any transmission before reverting to normal operations. Duration: 16 ms \pm 100 μs
xmit_max_time	
	Defines the maximum time the PCS Transmit state diagram can stay in DATA state. The xmit_max_timer shall be implemented in such a way that, upon expiration, an even number of nibbles has been sent to prevent the MAC from counting false alignment errors. Duration: $2 \text{ ms} \pm 100 \mu\text{s}$ NOTE—This is approximately 25% greater than maxEnvelopeFrameSize specified in 4.2.7.1.

168.3.2.7 State diagram

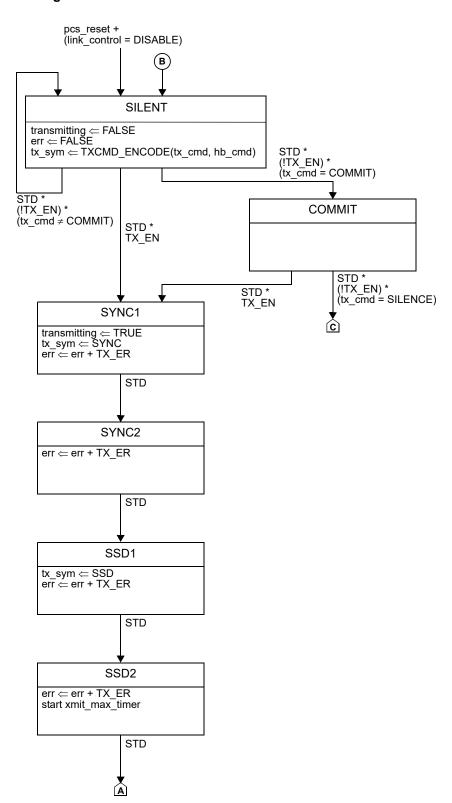


Figure 168-4—PCS Transmit state diagram, part a

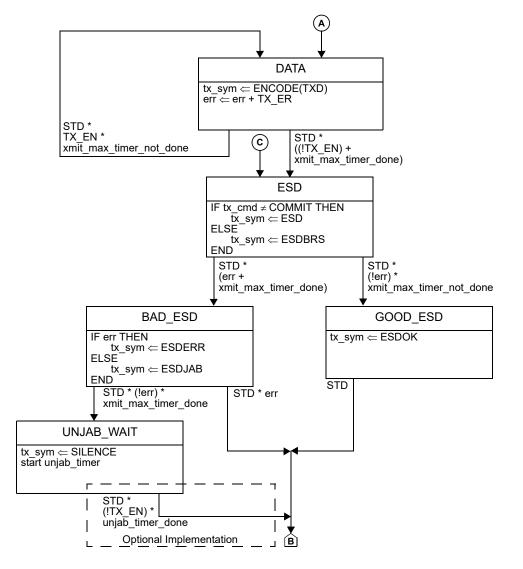


Figure 168-5—PCS Transmit state diagram, part b

168.3.2.8 Self-synchronizing scrambler

The PCS Transmit function shall implement multiplicative scrambling using the following generator polynomial $g(x) = x^{17} + x^{14} + 1$.

An implementation of a self-synchronizing scrambler by a linear-feedback shift register is shown in Figure 168–6. The bits stored in the shift register delay line at time n are denoted by $Scr_n < 16:0 >$. The '+' symbol denotes the exclusive-OR logical operation. When $Sc_n < 3:0 >$ is presented at the input of the scrambler, $Sd_n < 3:0 >$ is produced by shifting in each bit of $Sc_n < 3:0 >$ as $Sc_n < i >$, with i ranging from 0 to 3 (i.e., LSB first). The scrambler is reset upon execution of the PCS Reset function. If the PCS Reset is executed, all bits of the 17-bit vector representing the self-synchronizing scrambler state are arbitrarily set. The initialization of the scrambler state is left to the implementer. In no case shall the scrambler state be initialized to all zeros. At every STD, if no data is presented at the scrambler input via $Sc_n < 3:0 >$, the scrambler may be fed with arbitrary inputs.

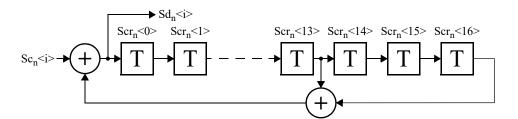


Figure 168-6—Self-synchronizing scrambler

168.3.2.9 Jabber functional requirements

The PCS Transmit function contains the capability to interrupt a transmission that exceeds a time duration determined by xmit_max_timer. If the packet being transmitted continues longer than the specified time duration, the PCS Transmit sends an ESD, ESDJAB symbol sequence to notify the receivers then inhibits further transmissions for at least the duration of unjab_timer. The PCS Transmit may return to normal operation automatically after unjab_timer elapsed and the error condition has been cleared or it may keep silent until reset.

168.3.3 PCS Receive

168.3.3.1 PCS Receive overview

The PCS Receive function shall conform to the PCS Receive state diagram in Figure 168–7 and Figure 168–8, and associated state variables.

The state diagram defined in Figure 168–7 is triggered by the reception of a SYNC symbol from the PMA Receive function and waits for two SSD symbols to start regenerating the packet preamble whose start has been replaced with the SYNC, SYNC, SSD, SSD sequence by the PCS Transmit function as described in Figure 168–4. After the second SSD is received, the PCS Receive function discards the next nine symbols. These symbols can be used to achieve lock of the self-synchronizing descrambler.

During the descrambler locking time, the special value 5 is conveyed to the MII via the RXD variable in order to rebuild the original preamble transmitted by the MAC.

The DATA state, in which 5B symbols are decoded into MII data, is left when ESD or ESDBRS followed by either ESDOK, ESDERR, or ESDJAB symbol is encountered or when the PMA detects SILENCE on the media (e.g., the transmitter prematurely stops data transmission).

During the WAIT_SYNC state, the PCS notifies the RS of a received BEACON indication by the means of the MII as specified in 22.2.2.8. When a sequence of at least two consecutive 'N' symbols is received, the MII signals RX_DV, RX_ER, and RXD<3:0> are set to the BEACON indication as shown in Table 22–2. Additionally, the PCS notifies the RS of a received COMMIT indication by the means of the MII as specified in 22.2.2.8. When a sequence of at least two consecutive SYNC is received, the MII signals RX_DV, RX_ER, and RXD<3:0> are set to the COMMIT indication as shown in Table 22–2.

168.3.3.2 Variables

link_control

See 168.3.2.2.

precnt

Counter for preamble regeneration.

rx_cmd	PLCA signalling decoded by the PCS.	1
RX_DV	TECA signating decoded by the Fes.	2
141_5	The RX_DV signal of the MII as specified in 22.2.2.7.	4 5
RX_ER	The RX_ER signal of the MII as specified in 22.2.2.10.	6 7
RXD	PCS decoded data synchronous to RX_CLK as specified in 22.2.2.8.	8 9
pcs_reset		10 11
	See 168.3.2.2.	12 13
RXn	The rx_sym parameter of the PMA_UNITADATA.indication primitive defined in 168.2.1. The 'n' subscript denotes the rx_sym conveyed in the most recent	14 15 16
	recv_symb_conv_timer cycle. The 'n-x' subscript indicates the rx_sym conveyed 'x' cycles before the most recent one.	18 19
transmitting	See 168.3.2.2.	20 21 22
168.3.3.3 Consta	ants	23 24
fc_supported	Indicates whether the optional False Carrier detection is supported. Values: TRUE or FALSE	25 26 27
BEACON	5B symbol defined as 'N' in 4B/5B encoding.	28 29 30 31
See also 168.3.2.3.		32 33
168.3.3.4 Function	ons	34 35
DECODE	This function takes a 5B symbol input parameter and returns a 4 bit value $Dc_n < 3:0 > value$ according to the following procedure: 1. Convert the 5B input symbol into $Dr_n < 3:0 > by$ performing a reverse lookup in Table 168–1. If no 4B value is associated to the given 5B symbol, the PCS Receive function shall assert RX_ER for at least one symbol period and $Dr_n < 3:0 > b$ may be set arbitrarily. 2. Convert $Dr_n < 3:0 > b$ to $Dc_n < 3:0 > b$ as specified in 168.3.3.8.	36 37 38 39 40 41 42 43 44 45
168.3.3.5 Abbrev	viations	46 47
RSCD	Alias for recv_symb_conv_timer_done.	48 49
168.3.3.6 Timers		50 51
recv_symb_conv	v_timer A continuous timer which expires when the PMA_UNITDATA.indication message is generated (see 168.2.1).	52 53 54

2 3

Continuous timer: The condition recv_symb_conv_timer_done becomes true upon timer expiration.

Restart time: Immediately after expiration.

Duration: timed by the PMA_UNITDATA.indication message generation.

168.3.3.7 State diagrams

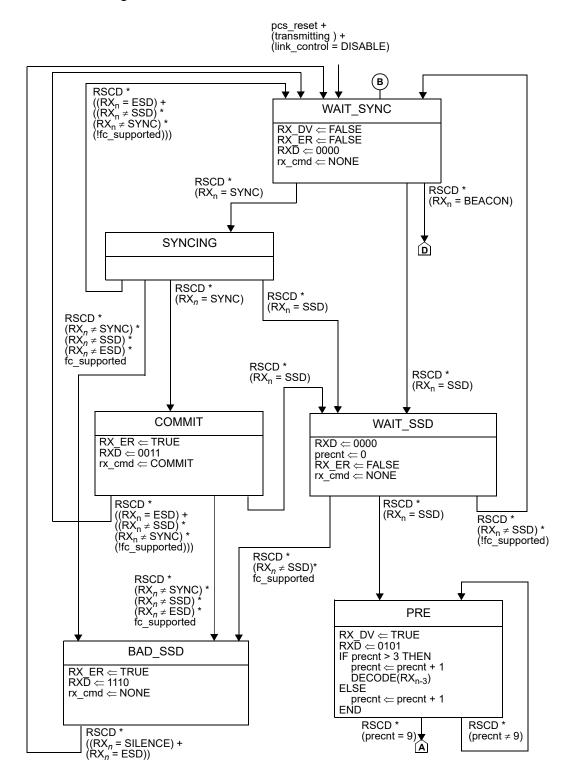


Figure 168-7—PCS Receive state diagram, part a

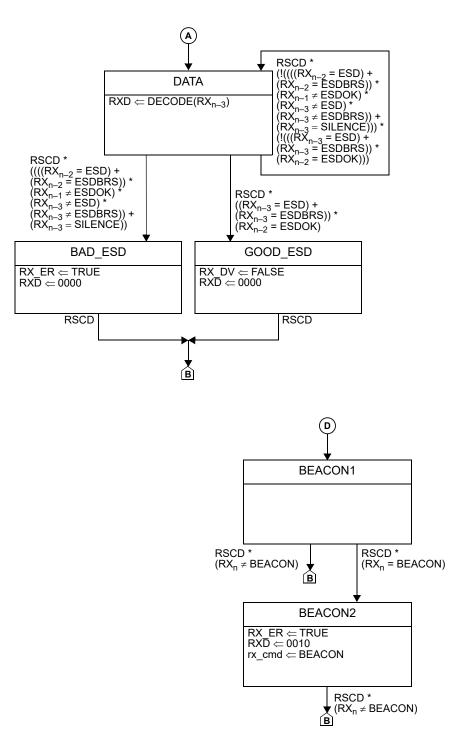


Figure 168-8—PCS Receive state diagram, part b

168.3.3.8 Self-synchronizing descrambler

The PCS Receive function descrambles the 5B/4B decoded data stream and returns the value of RXD<3:0> to the MII. The descrambler shall employ the polynomial g(x) defined in 168.3.2.8. The implementation of the self-synchronizing descrambler by linear-feedback shift register is shown in Figure 168–9. The bits stored in the shift register delay line at time n are denoted by Dcr_n <16:0>. The '+' symbol denotes the exclusive-OR logical operation.

When $Dr_n < 3:0 >$ is presented at the input of the descrambler, $Dc_n < 3:0 >$ is produced by shifting in each bit of $Dr_n < 3:0 >$ as $Dr_n < i >$, with i ranging from 0 to 3 (i.e., LSB first). The descrambler is reset upon execution of the PCS Reset function. If PCS Reset is executed, all the bits of the 17-bit vector representing the self-synchronizing descrambler state are arbitrarily set. The initialization of the descrambler state is left to the implementer. At every RSCD, if no data is presented at the descrambler input via $Dr_n < 3:0 >$, the descrambler may be fed with arbitrary inputs.

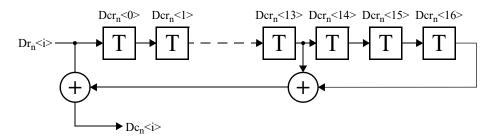


Figure 168-9—Self-synchronizing descrambler

168.3.3.9 Jabber diagnostics

The ESDJAB symbol informs the PCS Receiver that a frame was terminated by the jabber function. The number of received ESDJAB events can be reported to the management entity be the means of MDIO register 3.2293 or similar functionality if MDIO is not implemented.

168.3.4 PCS loopback

The PCS shall be placed in loopback mode when the loopback bit in MDIO register 3.0.14, defined in 45.2.3.1.2, is set to one (or PCS loopback mode is enabled by a similar functionality if MDIO is not implemented). In this mode, the PCS shall accept data on the transmit path from the MII and return it on the receive path to the MII. Additionally, the PHY receive circuitry shall be isolated from the network medium, and the assertion of TX_EN at the MII shall not result in the transmission of data on the network medium.

168.3.5 Collision detection

The 10BASE-T1M PHY shall detect when a transmission initiated locally results in a corrupted signal at the MDI as a collision. When collisions are detected, the PHY shall assert the signal COL on the MII for the duration of the collision or until TX_EN signal is FALSE.

The method for detecting a collision is implementation dependent but the following requirements have to be fulfilled:

- a) The PHY shall assert COL when it is transmitting and one or more other stations are also transmitting at the same time.
- b) The PHY shall assert CRS in the presence of a signal resulting from a collision between two or more other stations.

CRS is generated by mapping the PMA_CARRIER.indication (pma_crs) primitive to the MII signal CRS:

- a) CRS shall be asserted when the pma_crs parameter is CARRIER_ON.
- b) CRS shall be deasserted when the pma crs parameter is CARRIER OFF.

168.3.7 (HEARTBEAT SUPPORT - Deleted - to be renumbered on next draft

Editor's Note (to be removed at draft 1.0):

Also deleted HB symbols from 4B/5B table, as well as from state diagram variable descriptions.

168.4 Physical Medium Attachment (PMA) sublayer

PMA functions are illustrated in Figure 168–10.

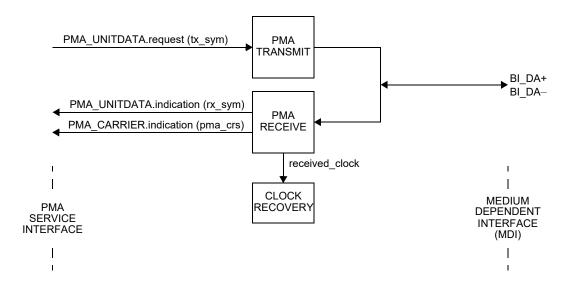


Figure 168–10—PMA functional block diagram

Editor's Note (to be removed prior to Working Group Ballot):

Technology Dependent Interface was removed since the PMA_LINK primitives were deleted; LINK MONITOR was removed since PCS_STATUS.indication was removed by comment 36 on D0.51

The reference diagrams do not explicitly show the PMA Reset function.

The PMA couples messages from the PMA service interface specified in 168.3.1 onto the 10BASE-T1M physical medium. The PMA provides half duplex communications to and from the medium. The interface between PMA and the baseband medium is the Medium Dependent Interface (MDI), which is specified

168.4.1 PMA Reset function

in 168.8.

The PMA Reset function shall be executed whenever one of the two following conditions occur:

- Power on (see 36.2.5.1.3).
- The receipt of a request for reset from the management entity.

The PMA Reset function carries out the following tasks:

- PMA Transmit output is set to high-impedance state.
- PMA UNITDATA.indication is cleared.

168.4.2 PMA Transmit function

During transmission, PMA UNITDATA request conveys the tx sym variable to the PMA. The value of the tx_sym variable is sent over the single balanced pair of conductors, BI DA.

The tx sym variable is a 5B symbol, to be encoded LSB first, using DME rules defined below:

If the tx sym parameter value is the special 5B symbol 'I', the PMA shall, in the following order:

- Transmit an additional DME encoded 0 if the previous value of the tx sym parameter was anything but the 5B symbol 'I'.
- Present the minimum impedance described in 168.8.1 at the MDI. This shall happen within 40 ns after the additional DME encoded 0 has been transmitted.

Editor's Note (to be removed before Working Group Ballot):

This specification either needs to be changed to reflect maintaining the TCI RL specification approach, or a minimum impedance at the PMA port needs to be added to 168.8.

If tx sym value is anything other than 'I', the following rules apply:

- A "clock transition" shall always be generated at the start of each bit.
- A "data transition" in the middle of a nominal bit period shall be generated if the bit to be transmitted is a logical '1'. Otherwise, no transition shall be generated until the next bit.

See Figure 168–11 and Table 168–2.

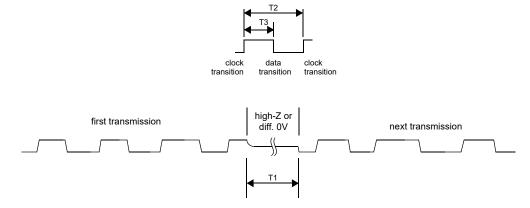


Figure 168-11-DME encoding scheme

Table 168–2—DME timings

Parameter name	Description	Minimum value	Nominal value	Maximum value	Unit of measure
T1	Delay between transmissions	480	_	_	ns
T2	Clock transition to clock transition	-100 ppm	80	+100 ppm	ns
Т3	Clock transition to data transition (data = 1)	38	40	42	ns

168.4.3 PMA Receive function

The 10BASE-T1M PMA Receive function comprises a single receiver (PMA Receive) for DME modulated signals on a single balanced pair of conductors, BI_DA. PMA Receive has the ability to translate the received signals on the single balanced pair of conductors into the PMA_UNITDATA.indication parameter rx_sym. It detects 5B symbols from the signals received at the MDI and presents these sequences to the PCS Receive function.

The PMA Receive function recovers encoded clock and data information from the DME encoded stream received at the MDI. The clock recovery provides a synchronous clock for sampling the signal on the pair. While it may not drive the MII directly, the clock recovery function is the underlying source of RX_CLK. In order to meet the specifications of 168.5.5.1, the PMA Receive function must achieve proper synchronization on both the DME stream and the 5B boundary within 800 ns.

The PMA Receive function interprets the signals at the MDI using the inverse mapping described in 168.4.2 for the PMA Transmit function and transfers the 5B code groups by the means of the PMA_UNITDATA.indication. When the PMA Receive function does not detect activity on the line, it shall convey the symbol 'I' (meaning SILENCE.)

168.5 PMA electrical specifications

This subclause defines the electrical characteristics of the PMA for a 10BASE-T1M PHY.

168.5.1 EMC tests

Direct Power Injection (DPI) and 150Ω emission tests for noise immunity and emission as per 168.5.1.1 and 168.5.1.2 may be used to establish a baseline for PHY EMC performance. These tests provide a high degree of repeatability and a good correlation to immunity and emission measurements. Operational requirements of the transceiver during the test are determined by the manufacturer.

Applications for the specified device commonly have additional requirements that limit its conducted radio frequency emission and its susceptibility to electromagnetic interference. Such requirements are beyond the scope of this standard.

168.5.1.1 Immunity—DPI test

In a real application, radio frequency (RF) common mode (CM) noise at the PHY is the result of electromagnetic interference coupling to the cabling system. Additional differential mode (DM) noise at the PHY is generated from the CM noise by mode conversion of all parts of the cabling system and the MDI. The sensitivity of the PMA's receiver to RF CM noise may be tested according to the DPI method of IEC 62132-4.

168.5.1.2 Emission—Conducted emission test

The emission of the PMA transmitter to its electrical environment may be tested according to the 150 Ω direct coupling method of IEC 61967-4, and may need to comply with more stringent requirements.

168.5.2 Test modes

The test modes described in this subclause shall be provided to allow testing of the transmitter. The test modes can be enabled by setting bits 1.2299.15:13 (TBD) (10BASE-T1M test mode control register) of the PHY Management register set as described in 45.2.1.186f.1(TBD). If MDIO is not implemented a similar functionality shall be provided by equivalent means. These test modes shall change only the data symbols provided to the transmitter circuitry and shall not alter the electrical and jitter characteristics of the transmitter and receiver from those of normal (non-test mode) operation.

- a) Test mode 1—Transmitter output voltage, timing jitter
- b) Test mode 2—Transmitter output droop test mode
- c) Test mode 3—Transmitter PSD mask
- d) Test mode 4—Transmitter high impedance mode

When test mode 1 is enabled, the PHY shall repeatedly transmit DME encoded ones.

When test mode 2 is enabled, the PHY shall transmit a positive differential voltage for $1.6 \mu s$ followed by a negative differential voltage level for $1.6 \mu s$. This sequence is repeated continually.

When test mode 3 is enabled, the PHY shall transmit continually a pseudo-random sequence of positive and negative voltage levels generated by the scrambler defined in 168.3.2.8 and encoded using DME as in 168.4.2.

When test mode 4 is enabled, the transmitter shall present a high impedance termination to the line as specified in 168.4.2 for the 'I' symbol.

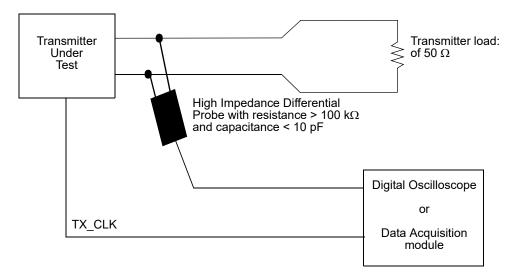


Figure 168–12—Transmitter test fixture 1 for transmitter voltage, transmitter droop, and transmitter timing jitter

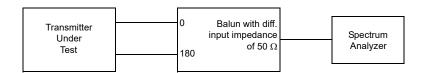


Figure 168–13—Transmitter test fixture 2 for power spectral density (PSD) measurement

To allow an easy synchronization of the measurement equipment, the PHY shall provide access to TX_CLK.

168.5.4 Transmitter electrical specification

The PMA shall operate with AC coupling to the MDI.

Where a load is not specified, the transmitter shall meet the requirements of this subclause with a 50 Ω resistive differential load connected to the transmitter output. Transmitter electrical tests are specified with a load tolerance of \pm 0.1%.

168.5.4.1 Transmitter output voltage

When tested using the test fixture shown in Figure 168–12 with the transmitter in test mode 1, the transmitter output voltage shall be 1 $V \pm 20\%$ peak-to-peak differential.

168.5.4.2 Transmitter output droop

Editor's Note (to be removed prior to Working Group Ballot):

Commenters are encouraged to consider the appropriateness of an 800ns time constant droop test for a DME transmitter which must transition every 80ns. Alternatives include a traditional pulse template, a tighter PSD mask, or a different time constant. Impact of not having the test on collisions may also be considered (as well as whether the test fixture needs modification for that).

When tested using the text fixture shown in Figure 168–12 with the transmitter in test mode 2, the magnitude of both the positive and negative droop measured with respect to the initial peak value after the zero crossing and the value 800 ns after the initial peak, depicted by Figure 168–14, shall be less than 30%.

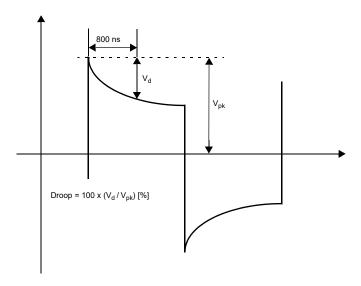


Figure 168-14—Transmitter output droop

168.5.4.3 Transmitter timing jitter

When measured using the test fixture shown in Figure 168–12 with the transmitter in test mode 1, the maximum jitter at the transmitter side shall be less than 5 ns symbol-to-symbol.

168.5.4.4 Transmitter Power Spectral Density (PSD)

When measured using test mode 3 and the test fixture shown in Figure 168–13, or equivalent, the transmitter Power Spectral Density (PSD) shall be between the upper and lower masks specified in Equation (168–1) and Equation (168–2).

The upper and lower limits are given in Equation (168–1) and Equation (168–2), and shown in Figure 168–15.

168.5.4.4.1 Upper PSD

$$UpperPSD(f) = \begin{cases} -61 & 0.3 \le f < 15 \\ -40 - 1.4f & 15 \le f < 25 \\ -75 & 25 \le f \le 40 \end{cases} dBm/Hz$$
 (168–1)

where

f is the frequency in MHz; $0.3 \le f \le 40$ Lower PSD

LowerPSD(
$$f$$
) = $\begin{cases} -87 + 2f & 5 \le f < 10 \\ -47 - 2f & 10 \le f \le 15 \end{cases}$ dBm/Hz (168–2)

where

f is the frequency in MHz; $5 \le f \le 15$

168.5.4.4.2 PSD mask

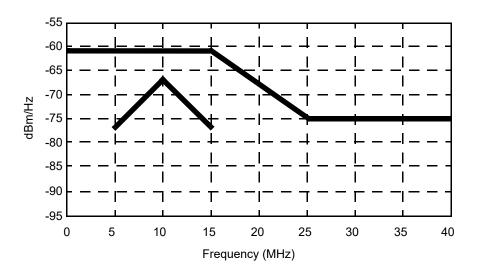


Figure 168–15—PSD upper and lower limits

168.5.4.5 Transmitter high impedance mode

Editor's Note (to be removed at draft 0.6):

This was changed from 'shall present the minimum' in clause 147 to "shall present at least the minimum" for clarity. No change in requirement was meant.

In test mode 4, a transmitter shall present at least the minimum parallel impedance across the MDI attachment points as specified in 168.8.1.

168.5.5 Receiver electrical specifications

168.5.5.1 Receiver differential input signals

Differential signals received at the MDI that were transmitted from a remote transmitter within the specifications of 168.5.4 and have passed through a mixing segment specified in 168.7 shall be received with a Bit Error Ratio (BER) of less than 10^{-10} and sent to the MII during normal data transmission. This specification can be verified by a frame error ratio less than 10^{-7} for 125 octet frames.

168.5.5.2 Alien crosstalk noise rejection

Editor's Note (to be removed prior to Working Group Ballot):

Consider more precise definition of the noise source, and whether the level is compatible with the 802.3da objectives, including link segment length and noise environment.

The test is performed with a noise source such that noise with a Gaussian distribution bandwidth of 40 MHz, and magnitude of -101 dBm/Hz is present at the MDI.

The receive DUT is connected to these noise sources through a resistive network as shown in Figure 168–16 with mixing segment as defined in 168.7. The BER shall be less than 10^{-10} . This specification may be considered satisfied when the frame loss ratio is less than 10^{-7} for 125 octet frames measured at MAC/PLS service interface.

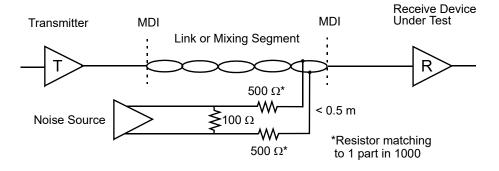


Figure 168–16—Alien crosstalk noise rejection test set-up

168.5.6 PMA local loopback

The PMA local loopback function is optional. If supported, the PMA shall be placed in local loopback mode when the PMA local loopback bit in MDIO register 1.0.0, defined in 45.2.1.1, or the PMA loopback bit in MDIO register 1.2297.13(**TBD**), defined in 45.2.1.186d.5 (**TBD**), is set to one (or PMA loopback mode is enabled by a similar functionality if MDIO is not implemented).

The PMA and PCS Receive functions shall pass to the MII RX the data decoded from the signal which is normally received during a transmission for the purpose of detecting collisions.

A MAC client can compare the packets sent through the MII Transmit function to the packets received from the MII Receive function to validate the 10BASE-T1M PCS and PMA functions.

168.6 Management interface

10BASE-T1M uses the management interface as specified in Clause 45. The Clause 45 MDIO electrical interface is optional. Where no physical embodiment of the MDIO exists, provision of an equivalent mechanism to access the registers is recommended.

168.7 Mixing segment characteristics

10BASE-T1M PHYs are designed to operate over media that meet the requirements specified in this subclause. The 10BASE-T1M mixing segment (1.4.331) is a single balanced pair of conductors that may have more than two MDIs attached.

The mixing segment shall be a linear topology, with DTE attached at a TCI, where the TCI has two connections, one facing the direction of each edge termination. The Trunk Connection Interface (TCI) connects the left and right sides of the mixing segment together and has a third port to attach the PMA at the MDI attachment point (see 168.7). The TCI is part of the mixing segment, and the requirements of 168.7 are met with TCIs in place with or without attached MDIs as specified for the particular specification.

A TCI may be a "T" type connector to provide a means of connecting the segments of balanced conductors and attaching the PMA of a DTE to the trunk. The connection is specified so as not to disturb the transmission line characteristics of the trunk conductor significantly, except for the increased insertion loss when loaded with a PMA. TCIs with compensation are expected to be matched to a particular DTE/PMA implementation, including any associated stub or service loop.

Figure 168–17 shows an example mixing segment with reference points. The mixing segment specifications in 168.7 are referenced to these designated points and are to be met without the MDI or other loads attached. The mixing segment specifications provide for a trunk-stub configuration, extended from the TCI. The electrical parameters in 168.7 include any trunk connection interface (TCI) connecting the left and right sides of the mixing segment, but do not include any external connection such as a stub or service loop from the TCI to the DTE hardware. The example trunk comprises TBD m of 1.02 mm (18 AWG) 100 Ω cabling, with a TCI at each location that a DTE may attach. The TCI is part of the mixing segment, and the requirements of 168.7 are met with TCIs in place with or without attached DTEs as specified for the particular specification. See 168.8 for further definition and description of the TCI. The trunk is terminated

at each end into 100Ω , at the point designated the 'edge termination'.

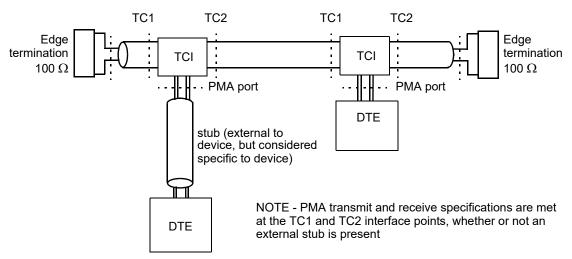


Figure 168-17-Mixing segment and reference points

Editor's Note (to be removed prior to Working Group ballot):

Contributions to fill in the detailed specifications of the mixing segment are needed, including at least the electrical parameters in the skeleton below.

168.7.1 Insertion loss

The mixing segment insertion loss is specified including any through-path insertion loss for the TCIs. See 168.8.1 for specification of the insertion loss and return loss (reflections) at the TCI interfaces.

The mixing segment insertion loss, without any PMAs or other loads attached, shall meet the values determined using Equation (168–3) between edge termination attachment points. The reference impedance is 100Ω .

$$IL(f) \le TBD \text{ dB}, \ 0.3 \text{ MHz} \le f \le 40 \text{ MHz}$$
 (168–3)

..

Editor's Note (to be removed prior to Working Group ballot):

Consider insertion loss equation (147-3) as a starting point.

168.7.2 Return loss

The mixing segment at each TCI PMA port, without a PMA or other loads attached, shall meet the return loss values determined using Equation (168–4). The reference impedance is 50Ω .

$$RL(f) \ge TBD \text{ dB}, 0.3 \text{ MHz} \le f \le 40 \text{ MHz}$$
 (168–4)

The mixing segment edge terminations, without a PMA or other loads attached, shall meet the return loss values determined using Equation (168–5). The reference impedance is 100Ω .

$$RL(f) \ge TBD \text{ dB}, 0.3 \text{ MHz} \le f \le 40 \text{ MHz}$$
 (168–5)

Editor's Note (to be removed prior to Working Group ballot):

Consider 147.7.2 return loss equation(147-4) as starting point.

168.7.3 Mode conversion loss

TBD

Editor's Note (to be removed prior to Working Group ballot):

This section requires contributions to specify which mode conversion measurements (e.g., TCL, TCTL, ELTCTL) are made at which points - at or between MDI attachment points, and at or between edge connections. Example text which might be improved may be found in IEEE Std 802.3-2022 at 147.8.3. Contributions are solicited, and may also consider 146.7.1.4 through 146.7.1.6, 97.6.1.4, and IEEE Std 802.3ck-2022.

168.7.4 Coupling attenuation

Editor's Note (to be removed prior to Working Group ballot):

Contributions are encouraged to explore the ramifications of using shielded cabling on multidrop mixing segments.

The coupling attenuation requirement applies to shielded mixing segments and depends on the electromagnetic noise environment. The requirements in Table 168–3 shall be met based on the local environment as described by the electromagnetic classifications given in Table 146–7, E1, E2, or E3.

Table 168–3—Coupling attenuation

Frequency		(dB)	
(MHz)	E ₁	E ₂	E ₃
TBD to TBD	≥ TBD	≥ TBD	≥ TBD

168.8 TCI specification

Editor's Note (to be removed prior to Working Group ballot):

Contributions and baselines are needed to fill out the TCI electrical specification in the subclauses here.

The interface of the Clause 168 PHY to the mixing segment is called the Trunk Connection Interface (TCI). While technically it aligns with the definition of an MDI in 1.4.395, the fact that the TCI has two ports to the medium and plays a role in mixing segment specifications by connecting the left and right sides of the linear mixing segment mandates it has a unique role beyond what is normally considered in an MDI.

Each TCI has two interfaces and a four-wire interface connecting to the DTE (and any associated stub or service loop) at the TCI's PMA port. as shown in Figure 168–18.

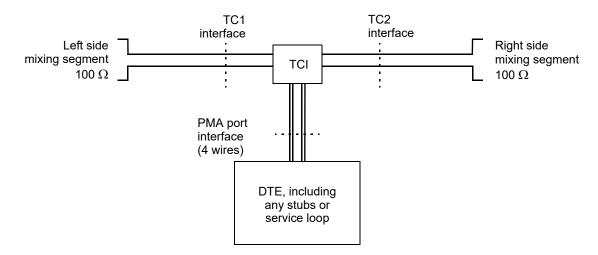


Figure 168-18—TCI ports and connections

The through connection from the left side to the right side of the mixing segment occurs through the TCI, but practically, when a DTE is connected this may be implemented by breaking the path at the TCI and completing the electrical path within the DTE. A TCI may be a "T" type connector to provide a means of connecting the segments of balanced conductors and attaching a PMA to the mixing segment.

The connections of the TCI are specified so as not to disturb the transmission line characteristics of the mixing segment conductor significantly, except for the increased insertion loss when loaded with a PMA. TCIs with compensation are expected to be matched to a particular PMA.

The TCI may be an adapter separate from the DTE's PMA assembly or the TCI and the PMA of the DTE may be located within a single assembly. The latter configuration presents a negligible stub length when the PMA attachment is open circuit. Either configuration may include compensation engaged when a PMA or PMA load is attached.

168.8.1 TCI electrical specification

168.8.1.1 TCI Insertion Loss

Without a PMA or PMA loading present, the differential insertion loss of the TCI between ports TC1 and TC2 shall be less than TBD dB (ed note - small number) from 0.3 to 40 MHz, in each direction, measured into 100Ω .

With the PMA (or PMA load specified for the TCI) present at the PMA port, the differential insertion loss of the TCI between the trunk ports shall be less than TBD dB (ed note - allows for compensation and phy loading –may be an equation) from 0.3 to 40 MHz, in each direction, measured into 100Ω .

168.8.1.2 TCI Return Loss

Without a PMA (or PMA load specified for the TCI) present at the PMA port, the return loss of the TCI at ports TC1 and TC2 shall be greater than Equation (168–6) with the other trunk port terminated in 100 Ω . NOTE – this is to allow meeting the unloaded mixing segment RL specification at 168.7.2.

$$RL(f) \ge TBD \text{ dB}, 0.3 \text{ MHz} \le f \le 40 \text{ MHz}$$
 (168–6)

With a PMA or PMA load present at the TCI attachment, the return loss of the TCI at port TC1 and TC2 shall be greater than Equation (168–7) with the other trunk port terminated in 100 Ω . NOTE -this specification replaces the MDI return loss and is measured at the TCI.

$$RL(f) \ge TBD \text{ dB}, 0.3 \text{ MHz} \le f \le 40 \text{ MHz}$$
 (168–7)

168.8.2 TCI line powering voltage tolerance

The DTE shall withstand without damage the application of any voltages between 0 V dc and 60 V dc with the source current limited to 2000 mA, applied across the TCI's PMA port's BI_DA+ and BI_DA- in either polarity, under all operating conditions indefinitely.

168.8.3 TCI fault tolerance

Each balanced pair of the TCI shall withstand without damage the application of short circuits of any wire to the other wire of the same pair or ground potential, as per Table 168–4, under all operating conditions indefinitely. Normal operation shall resume after all short circuits have been removed.

Table 168–4—Fault conditions

BI_DA+	BI_DA-
BI_DA-	BI_DA+
Ground	No fault
No fault	Ground
Ground	Ground
+60 V dc	No fault
No fault	+60 V dc
+60 V dc	+60 V dc
Ground	+60 V dc
+60 V dc	Ground

168.9 Environmental specifications

Editor's Note (to be removed prior to Working Group Ballot):

Consider whether these specifications are aligned with the changes made in 802.3cr-2021, including Annex J.

168.9.1 General safety

All equipment subject to this clause is expected to conform to IEC 60950-1, IEC 62368-1, or IEC 61010-1. All equipment subject to this clause is expected to conform to all applicable local, state, national, and application-specific standards.

168.9.2 Network safety

All cabling and equipment subject to this clause is expected to be mechanically and electrically secure in a professional manner. All 10BASE-T1M cabling is expected to be routed according to any applicable local, state, or national standards considering all relevant safety requirements. In automotive applications, all 10BASE-T1M cabling is expected to be routed to provide maximum protection by the motor vehicle sheet metal and structural components, following SAE J1292, ISO 14229, and ISO 15764. The designer is urged to consult the relevant local, national, and international safety regulations to ensure compliance with the appropriate requirements.

168.9.2.1 Environmental safety

This subclause sets forth a number of recommendations and guidelines related to safety concerns; this list is neither complete nor does it address all possible safety issues. The designer is urged to consult the relevant local, national, and international safety regulations to ensure compliance with the appropriate requirements.

Systems described in this subclause are subject to various environmental hazards during their installation and use. In particular, equipment used in automotive and industrial environments can expect to meet the potential environmental stresses with respect to their mounting location defined for the application. Stresses expected in these environments may include but are not limited to those found in the listed specifications.

The following specifications describe potential environmental stresses in an automotive environment:

- General loads: ISO 16750-1
- Electrical loads: ISO 16750-2, ISO 7637-2, and ISO 8820-1
- Mechanical loads: ISO 16750-3, ASTM D4728, and ISO 12103-1
- Climatic loads: ISO 16750-4, and IEC 60068-2-1, IEC 60068-2-27, IEC 60068-2-30, IEC 60068-2-38, IEC 60068-2-52, IEC 60068-2-64, and IEC 60068-2-78
- Chemical loads: ISO 16750-5 and ISO 20653

The following specifications define potential environmental stresses in an industrial environment:

- Environmental loads: IEC 60529 and ISO 4892
- Mechanical loads: IEC 60068-2-6 and IEC 60068-2-31
- Climatic loads: IEC 60068-2-1, IEC 60068-2-2, IEC 60068-2-14, IEC 60068-2-27, IEC 60068-2-30, IEC 60068-2-38, IEC 60068-2-52, and IEC 60068-2-78

Additional environment(s) require careful analysis prior to implementation to determine appropriate environmental safety requirements.

168.9.2.2 Electromagnetic compatibility

A system integrating the 10BASE-T1M PHY is expected to comply with all applicable local and national codes for electromagnetic compatibility. In addition, the system may need to comply with more stringent requirements for the limitation of electromagnetic interference.

168.10 Delay constraints

The PHY shall comply with the timing requirements specified in Table 168–5.

Table 168-5—10BASE-T1M delay constraints

Event	Minimum value	Maximum value	Unit of measure	Input timing reference	Output timing reference
TX_EN/TX_ER sampled to MDI output	120	440	ns	Rising edge of MII TX_CLK	First DME clock transition at the MDI
MDI input to CRS asserted	400	1040	ns	First DME clock transition at the MDI	Rising edge of CRS
MDI input to CRS deasserted	640	1120	ns	Last DME encoded zero clock transition at the MDI	Falling edge of CRS
MDI input to COL asserted	0	5	μs	Start of corrupted transmitted signal at the MDI	Rising edge of COL
MDI input to COL deasserted	0	3.2	μs	End of transmission at the MDI	Falling edge of COL
MDI input to RX_DV asserted	2.4	4	μs	First DME clock transition at the MDI	Rising edge of RX_DV
MDI input to RX_ER asserted	1.6	4	μs	First DME clock transition at the MDI	Rising edge of RX_ER

168.11 Protocol implementation conformance statement (PICS) proforma for Clause 168, Physical Coding Sublayer (PCS), Physical Medium Attachment (PMA) sublayer and baseband medium, type 10BASE-T1M⁷

168.11.1 Introduction

The supplier of a protocol implementation that is claimed to conform to Clause 168, Physical Coding Sublayer (PCS), Physical Medium Attachment (PMA) sublayer and baseband medium, type 10BASE-T1M, shall complete the following protocol implementation conformance statement (PICS) proforma.

A detailed description of the symbols used in the PICS proforma, along with instructions for completing the PICS proforma, can be found in Clause 21.

168.11.2 Identification

168.11.2.1 Implementation identification

Supplier ¹	
Contact point for inquiries about the PICS ¹	
Implementation Name(s) and Version(s) ^{1,3}	
Other information necessary for full identification—e.g., name(s) and version(s) for machines and/or operating systems; System Name(s) ²	
NOTE 1—Required for all implementations. NOTE 2—May be completed as appropriate in meeting the NOTE 3—The terms Name and Version should be interpreterminology (e.g., Type, Series, Model).	

168.11.2.2 Protocol summary

Identification of protocol standard	IEEE Std 802.3da-202x, Clause 168, Physical Coding Sublayer (PCS), Physical Medium Attachment (PMA) sublayer and baseband medium, type 10BASE-T1M		
Identification of amendments and corrigenda to this PICS proforma that have been completed as part of this PICS			
Have any Exception items been required? No [] Yes [] (See Clause 21; the answer Yes means that the implementation does not conform to IEEE Std 802.3da-202x.)			

D-4 f C4-4	
Date of Statement	

⁷Copyright release for PICS proformas: Users of this standard may freely reproduce the PICS proforma in this subclause so that it can be used for its intended purpose and may further publish the completed PICS.

168.11.3 Major capabilities/options

Item	Feature	Subclause	Value/Comment	Status	Support
*MDIO	MDIO Capability	45.1	Register and Interface supported	O	Yes [] No []
*INS- P2P	Installation / Point-to-point cabling	168.7	Items marked with *INS-P2P include installation practices and cabling specifications for link segments and are not applicable to a PHY manufacturer	0	Yes [] No []
*INS- MIX	Installation / Mixing segment	168.7	Items marked with *INS-MIX include installation practices and cabling specifications for mixing segments and are not applicable to a PHY manufacturer	0	Yes [] No []
MII	PHY associated with MII	168.1.1		О	Yes [] No []
PCS	10BASE-T1M PCS	168.3		M	Yes [] No []
PMA	10BASE-T1M PMA	168.4		М	Yes [] No []

168.11.4 PICS proforma tables for Physical Medium Attachment (PMA) sublayer and baseband medium, type 10BASE-T1M

168.11.4.1 PCS Transmit

Item	Feature	Subclause	Value/Comment	Status	Support
PCST1	PCS Reset	168.3.1	See 168.3.1	M	Yes []
PCST2	PCS Data Transmission Enable function	168.3.2.1	Conform to the PCS Transmit state diagram	M	Yes []
PCST3	Values of tx_cmd variable	168.3.2.2	See 168.3.2.2	M	Yes []
PCST4	PCS Transmit function scrambler polynomial	168.3.2.8	$g(x) = x^{17} + x^{14} + 1$	M	Yes []
PCST5	PCS scrambler seed values	168.3.2.8	Never initialized to zeros	M	Yes []
PCST6	xmit_max_timer	168.3.2.6	Upon expiration, an even number of nibbles have been sent	M	Yes []

168.11.4.2 PCS Receive

Item	Feature	Subclause	Value/Comment	Status	Support
PCSR1	PCS Receive function	168.3.3.1	Conform to the PCS Receive state diagram and associated variables	M	Yes []
PCSR2	Generation of RXD<3:0> to the MII	168.3.3.8	Descramble the 5B/4B decoded data stream and return the proper sequence of nibbles	М	Yes []
PCSR3	self-synchronizing descrambler	168.3.3.8	See 168.3.2.8	M	Yes []
PCSR4	False Carrier supported	168.3.3.7	See Figure 168–7	О	Yes []

168.11.4.3 PCS loopback

Item	Feature	Subclause	Value/Comment	Status	Support
PCSL1	PCS loopback	168.3.4	The PCS shall be placed in loopback mode when the loopback bit in MDIO register 3.0.14, defined in 45.2.3.1.2, is set to one	MDIO: M	Yes [] N/A[]
PCSL2	PCS loopback function	168.3.4	The PCS shall accept data on the transmit path from the MII and return it on the receive path to the MII	M	Yes []
PCSL3	PHY receive circuitry isolation	168.3.4	The PHY receive circuitry shall be isolated from the network medium	М	Yes []
PCSL4	PHY transmit circuity isolation	168.3.4	The assertion of TX_EN at the MII shall not result in the transmission of data on the network medium	М	Yes []

168.11.4.4 Collision detection

Item	Feature	Subclause	Value/Comment	Status	Support
CD1	Detect collisions on the media during data transmission	168.3.5	When a transmission initiated locally results in a corrupted signal at the MDI, a collision is detected	M	Yes [] N/A[]
CD2	When collisions are detected	168.3.5	Assert the signal COL on the MII for the duration of the collision or until TX_EN signal is FALSE	M	Yes [] N/A[]
CD3	CRS asserted during collision of two or more other stations	168.3.5	See 168.3.5	М	Yes [] N/A[]
CD4	Sense when the media is busy	168.3.6	Assert the signal CRS on the MII as specified in 22.2.2.11	M	Yes [] N/A[]

168.11.4.5 Physical Medium Attachment (PMA)

168.11.4.5.1 PMA function

Item	Feature	Subclause	Value/Comment	Status	Support
PMA1	PMA reset function	168.4.1	See 168.4.1	M	Yes []
PMA2	tx_sym parameter value is the special 5B symbol 'I'	168.4.2	See 168.4.2	М	Yes []
PMA3	receive SILENCE	168.4.3	PMA receive conveys symbol 'I' when no activity is detected on the line	M	Yes []

168.11.4.5.2 PMA electrical specification

Item	Feature	Subclause	Value/Comment	Status	Support
PMAE1	Test modes	168.5.2	Implemented in PHY to allow testing transmitter electrical requirements	М	Yes []
PMAE2	Enable test modes	168.5.2	Enable by setting bits 1.2299.15:13 (TBD) as described in 45.2.1.186f (TBD) when MDIO implemented; similar functionality provided otherwise	MDIO:M	Yes [] N/A[]
PMAE3	These test modes shall change only the data symbols provided to the transmitter circuitry and shall not alter the electrical and jitter characteristics of the transmitter and receiver from those of normal (non-test mode) operation	168.5.2		M	Yes []
PMAE4	Test mode 1	168.5.2	When enabled, PHY repeatedly transmits DME encoded ones	M	Yes []
PMAE5	Test mode 2	168.5.2	When enabled, PHY repeatedly transmits a positive differential voltage for 1.6 µs followed by a negative differential voltage level for 1.6 µs	М	Yes []
PMAE6	Test mode 3	168.5.2	When test mode 3 is enabled, the PHY shall transmit continually a pseudo-random sequence of positive and negative voltage levels, generated by the scrambler defined in 168.3.2.8 and encoded using Differential Manchester Encoding (DME) as in 168.4.2	M	Yes []
PMAE7	Test mode 4	168.5.2	When enabled, PHY transmitter shall present a high impedance termination to the line as specified in 168.4.2	M	Yes [] N/A[]
PMAE8	TX_CLK	168.5.3	PHY to provide access to TX_CLK	M	Yes []
PMAE9	AC coupling at MDI	168.5.4		М	Yes []
PMAE10	The transmitter shall meet the requirements of this subclause with a $50~\Omega \pm 0.1\%$ resistive differential load connected to the transmitter output	168.5.4		М	Yes [] N/A[]
PMAE11	Transmitter output voltage	168.5.4.1	$1.0~V\pm20\%$ peak-to-peak differential when measured on test mode 1	М	Yes []

Item	Feature	Subclause	Value/Comment	Status	Support
PMAE12	Transmitter output droop	168.5.4.2	Less than 30% when measured on test mode 2	M	Yes []
PMAE13	Transmitter timing jitter	168.5.4.3	Less than 5 ns symbol-to- symbol jitter when measured on test mode 1	М	Yes []
PMAE14	Transmit power spectral density	168.5.4.4	Between the upper and lower masks specified in Equation (168–1) and Equation (168–2) when measured on test mode 3	М	Yes []
PMAE15	A transmitter configured for test mode 4	168.5.4.5	Presents the minimum parallel impedance across the MDI attachment points	М	Yes []
PMAE16	Receiver differential input signals	168.5.5.1	Can be verified with a frame error ratio less than 1×10^{-7} for 125 octet frames	М	Yes []
PMAE17	Alien crosstalk noise rejection	168.5.5.2	BER < 10 ⁻¹⁰ with an alien crosstalk noise of Gaussian distribution of magnitude of –101 dBm/Hz and bandwidth of 40 MHz at the MDI	M	Yes []
PMAE18	PMA local loopback	168.5.6	The PMA shall be placed in loopback mode when the PMA local loopback bit in MDIO register 1.0.0, defined in 45.2.1.1, or in MDIO register 1.2297.13 (TBD), defined in 45.2.1.186d.5 (TBD) is set to one	MDIO:O	Yes [] No [] N/A[]
PMAE19	PMA local loopback	168.5.6	The PMA and PCS Receive functions pass the data decoded from the signal to the MII RX	MDIO:M	Yes [] No [] N/A[]

168.11.4.6 Mixing segment characteristics

Editor's Note (to be removed prior to Working Group ballot):

Clarification that the insertion loss and mode conversion loss needs to be met between any two MDI attachment points is required. This needs to be met between all combinations. See note at 168.7.1 - when this text is updated, the Value/Comment text at MXS1 and MXS3 may need updating.

Item	Feature	Subclause	Value/Comment	Status	Support
MXS1	Insertion loss	168.7.1	Measured between any pair of MDI attachment points	INS- MIX:M	Yes []
MXS2	Return loss	168.7.2	Measured with a reference impedance of 50 Ω	INS- MIX:M	Yes []
MXS3	Mode conversion loss	168.7.3	Measured between any two MDI attachment points	INS- MIX:M	Yes []

168.11.4.7 MDI specification

Item	Feature	Subclause	Value/Comment	Status	Support
MDI1	MDI Electrical parameter 1 (e.g., minimum electrical impedance)	168.8.1		M	Yes []
MDI2	MDI line powering voltage tolerance	168.8.2	Up to 60 V dc with the source current limited to 2000 mA	M	Yes []
MDI3	MDI fault tolerance	168.8.3	Withstand without damage the application of a short circuit of any wire to the other wire of the same pair or ground potential. Normal operation resumes after all short circuits are removed.	M	Yes []

168.11.4.8 Delay constraints

Item	Feature	Subclause	Value/Comment	Status	Support
DC1	Delay constraints	168.10	Comply with Table 168–5	M	Yes []